If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 0 = z3 + 2z2 + 2z + 1 Reorder the terms: 0 = 1 + 2z + 2z2 + z3 Solving 0 = 1 + 2z + 2z2 + z3 Solving for variable 'z'. Combine like terms: 0 + -1 = -1 -1 + -2z + -2z2 + -1z3 = 1 + 2z + 2z2 + z3 + -1 + -2z + -2z2 + -1z3 Reorder the terms: -1 + -2z + -2z2 + -1z3 = 1 + -1 + 2z + -2z + 2z2 + -2z2 + z3 + -1z3 Combine like terms: 1 + -1 = 0 -1 + -2z + -2z2 + -1z3 = 0 + 2z + -2z + 2z2 + -2z2 + z3 + -1z3 -1 + -2z + -2z2 + -1z3 = 2z + -2z + 2z2 + -2z2 + z3 + -1z3 Combine like terms: 2z + -2z = 0 -1 + -2z + -2z2 + -1z3 = 0 + 2z2 + -2z2 + z3 + -1z3 -1 + -2z + -2z2 + -1z3 = 2z2 + -2z2 + z3 + -1z3 Combine like terms: 2z2 + -2z2 = 0 -1 + -2z + -2z2 + -1z3 = 0 + z3 + -1z3 -1 + -2z + -2z2 + -1z3 = z3 + -1z3 Combine like terms: z3 + -1z3 = 0 -1 + -2z + -2z2 + -1z3 = 0 Factor out the Greatest Common Factor (GCF), '-1'. -1(1 + 2z + 2z2 + z3) = 0 Ignore the factor -1.Subproblem 1
Set the factor '(1 + 2z + 2z2 + z3)' equal to zero and attempt to solve: Simplifying 1 + 2z + 2z2 + z3 = 0 Solving 1 + 2z + 2z2 + z3 = 0 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined. The solution to this equation could not be determined.
| 5x+15=4x+6x | | z^3+2z^2+2z+1= | | (6-w)(5w-3)=0 | | 3(x-12)=18 | | 122=6x+4(-4x+13) | | -9m-38=m-(10m+2) | | 9x+14y=97 | | -6=5x+6(-3x+12) | | 3(2-3)5-6= | | 26x+1=27x-3 | | -3t=t+9-4t | | 3x^3+6x^2+15x=0 | | 0=-2x+2(3x-14) | | 12x+9=10x+8 | | 7x-7(5x-18)=-14 | | 3(7-9x)-5(5x+1)=9(2x-5)-3(3x-5) | | X+113=x+83 | | -4x-2(-5x-17)=70 | | 81y-9y^2=1 | | h(t)=-16t^2+176t+15 | | (x*500)+((x-1)*500)=1500 | | (5a+4)=8 | | -5x+2(-4x+17)=99 | | 6x^2+-12x+6=0 | | (4*500)+x=3000 | | (2*500)+x=500 | | (2*500)+x=1500 | | (2*500)+(x*500)=500 | | (4*500)+(x*500)=3000 | | 2x-2(2x-12)=14 | | (3*500)+(x*500)=1500 | | 2(4a+2)=4/8 |